

Pages 2 / 35 Lunaray Blockchain Security

Table of Contents

1. Overview .. 4

2. Background .. 5

2.1 Project Description .. 5

2.2 Audit Range ... 6

3. Project contract details .. 7

3.1 Contract Overview ... 7

3.2 Contract details ... 8

4. Audit details .. 13

4.1 Findings Summary .. 13

4.2 Risk distribution .. 14

4.3 Risk audit details ... 16

4.3.1. Administrator Permissions .. 16

4.3.2 No events added .. 17

4.3.3 Claim Logic Analysis .. 18

4.3.4 breedCat Logic Analysis ... 19

4.3.5 morphToAdult Logic Analysis ... 20

4.3.6 _spawnCat Logic Analysis .. 21

4.3.7 buyByU Logic Analysis .. 22

4.3.8 Variables are updated ... 23

4.3.9 Floating Point and Numeric Precision .. 23

4.3.10 Default Visibility ... 24

4.3.11 tx.origin authentication ... 24

4.3.12 Faulty constructor .. 25

4.3.13 Unverified return value ... 25

4.3.14 Insecure random numbers ... 26

4.3.15 Timestamp Dependency .. 26

4.3.16 Transaction order dependency .. 27

4.3.17 Delegatecall ... 27

4.3.18 Call .. 28

Pages 3 / 35 Lunaray Blockchain Security

4.3.19 Denial of Service ... 28

4.3.20 Logic Design Flaw ... 29

4.3.21 Fake recharge vulnerability ... 29

4.3.22 Short Address Attack Vulnerability .. 30

4.3.23 Uninitialized storage pointer ... 30

4.3.24 Frozen Account bypass .. 31

4.3.25 Uninitialized ... 31

4.3.26 Reentry Attack ... 31

4.3.27 Integer Overflow ... 32

5. Security Audit Tool ... 33

Pages 4 / 35 Lunaray Blockchain Security

1. Overview

On Dec 13, 2021, the security team of Lunaray Technology received the security audit

request of the CyberCat project. The team completed the audit of the CyberCat smart

contract on Dec 24, 2021. During the audit process, the security audit experts of Lunaray

Technology and the CyberCat project interface Personnel communicate and maintain

symmetry of information, conduct security audits under controllable operational risks,

and avoid risks to project generation and operations during the testing process.

Through communicat and feedback with CyberCat project party, it is confirmed that the

loopholes and risks found in the audit process have been repaired or within the

acceptable range. The result of this CyberCat smart contract security audit: Passed

Audit Report Hash:

51E829CE419C5618522960A75FCEF601B6A6164E6DCBBD9AD9941E361DAE69AB

Pages 5 / 35 Lunaray Blockchain Security

2. Background

2.1 Project Description

Project name CyberCat

Contract type Token , NFT , GameFi

Total Issue 2100 000 000 (HEP)

Code language Solidity

Public chain Binance , OKLink

Project address https://www.cybercat.world/

Contract file CoreCat.sol, CyberCatBlindBox.sol, HealthPotion.sol,
RewardClaim.sol

Project Description CyberCat is a Play-to-Earn mode crypto game published by
CherrySwap. In the CyberCat world, players are able to
collect, breed, raise, fight and trade the creatures known as
CyberCats, and anyone can earn in CyberCat through skilled
play and contributions to the ecosystem.

Pages 6 / 35 Lunaray Blockchain Security

2.2 Audit Range

The smart contract file provided by CyberCat and the corresponding MD5：

Name address

CoreCat.sol D97874FA7222065AB727FEF65707AB2E

CyberCatBlindBox.sol 5206BA1101A54B4DDBDFA0393E111681

HealthPotion.sol CC784CF730285796055A6D08C24C6717

RewardClaim.sol 03D7A62A710AD91C27E6D85B788A3334

Pages 7 / 35 Lunaray Blockchain Security

3. Project contract details

3.1 Contract Overview

HealthPotion Contract

Issue HEP Token, $HEP (Health potion) is the CyberCat ecological currency, and HEP
is an incentive token for players to participate in game competition.

CatCore Contract

The CatCore contract is the core logic of CyberCat. The main functions are to raise
cats, form into adults, hatch, evolve cats, etc. In addition to this there are some
variables that can be set by the administrator.

CyberCatBlindBox Contract

The CyberCatBlindBox contract is mainly for buying NFT, and three types of
purchase exist. The other methods are mainly managed by onlyOwner, such as the
setting of some variables.

RewardClaim Contract

The RewardClaim contract logic is mainly to send rewards, either by receiving the
feeAmount yourself or by sending the RewardToken by the administrator.

Pages 8 / 35 Lunaray Blockchain Security

3.2 Contract details

RewardClaim Contract

Name Parameter Attributes

RewardClaim addresspayable _feeTo uint256 _feeAmount

IERC20 _rewardToken

public

setFeeTo addresspayable _feeTo onlyOwner

setFeeAmount uint256 _feeAmount onlyOwner

setAdmin address _admin bool _status onlyOwner

claim none external

reward address _user uint256 _amount uint256 _deadline onlyAdmin

HasMinters Contract

Name Parameter Attributes

addMinters address[] memory _addedMinters onlyAdmin

removeMinters address[] memory _removedMinters onlyAdmin

isMinter address _addr public

ERC20Mintable Contract

Name Parameter Attributes

mint address _to uint256 _value onlyMinter

_mint address _to uint256 _value internal

Pages 9 / 35 Lunaray Blockchain Security

CatCore Contract

Name Parameter Attributes

initialize string _name string _symbol address _potion

address _feeToken uint256 _feeAmount

address _feeTo uint256 _feeToPercent

address _feeToDead address _potionFeeTo

address _geneScience uint256 _initSupply

uint256 _matureDays

public

mintInit uint256 _size external

getCat uint256 _catId external

needPotions uint8 _sireBreed uint8 _matronBreed public

isBreedable uint256 _sireId uint256 _matronId public

setFeeInfo address _potion address _feeToken

uint256 _feeAmount address _feeTo

address _potionFeeTo

external

setFeeToken address _feeToken external

setFeeAmount uint256 _feeAmount external

setFeeTo address _feeTo external

setFeeToDead address _feeToDead external

setFeeToPercent uint256 _feeToPercent external

setPotionFeeTo address _potionFeeTo external

setPotionFeeInfo uint _index uint256 _amount external

setBreedInfo uint256 _breed uint256 _matureDays external

setBreed uint256 _breed external

Pages 10 / 35 Lunaray Blockchain Security

forbidToken uint256 tokenId external

unForbidToken uint256 tokenId external

setMatureDays uint256 _matureDays external

setNewGeneScience address _geneScience external

breedCat uint256 _sireId uint256 _matronId external

morphToAdult uint256 _catId external

_spawnCat uint256 _gene address _owner private

evolveCat uint256 _catId uint256 _newGene public

setBaseUri string _uri public

setUriPre string _uriPre public

setUriTail string _uriTail public

setTokenURI uint256 _tokenId internal

Pages 11 / 35 Lunaray Blockchain Security

CyberCatBlindBox Contract

Name Parameter Attributes

initialize IERC20 _cherryToken uint256 _chePrice

IERC20 _usdtToken uint256 _usdtPrice

uint256 _basePrice

addresspayable _feeAddress

uint256 _maxBoxAmount

uint256 _maxSizeOneTimes

address _nftAddress string _sec

onlyOwner

setMaxBoxAmount uint256 _maxBoxAmount onlyOwner

setMaxSizeOneTimes uint256 _maxSizeOneTimes onlyOwner

setSec string _sec onlyOwner

setChePrice uint256 _chePrice onlyOwner

setUsdtPrice uint256 _usdtPrice onlyOwner

setEthPrice uint256 _ethPrice onlyOwner

setFeeAddress addresspayable _feeAddress onlyOwner

_generateNextNFTId none private

_generateNextBOXId none private

_generateNextCollectionId none private

depositNFT uint256 _tokenId onlyOwner

withdrawNFT uint256 _nftId onlyOwner

withdraw uint256 _collectionId uint256 _size onlyOwner

buyByChe uint256 _collectionId uint256 _size external

buyByU uint256 _collectionId uint256 _size external

Pages 12 / 35 Lunaray Blockchain Security

buyByEth uint256 _collectionId uint256 _size external

getBuyNum uint256 _collectionId address _user external

myBox uint256 _collectionId external

getCollectionNFTId uint256 _collectionId onlyOwner

getCurrentCollectionId none external

createCollection string _name uint256 _size

uint256 _durationBlock

uint256 _cheLimitSize uint256 _uLimitSize

uint256 _ethLimitSize

onlyOwner

getUnSaleNFT uint256 _collectionId uint256 _limit internal

setSaleLimit uint256 _collectionId uint256 _cheLimitSize

uint256 _uLimitSize uint256 _ethLimitSize

onlyOwner

setCheLimit uint256 _collectionId uint256 _cheLimitSize onlyOwner

setULimit uint256 _collectionId uint256 _uLimitSize onlyOwner

setEthLimit uint256 _collectionId uint256 _ethLimitSize onlyOwner

publishCollection uint256 _collectionId uint256 _startBlock

uint256 _durationBlock

onlyOwner

getBoxs uint256 _collectionId onlyOwner

isOnSale uint256 _collectionId public

randomIndex uint256 _collectionId uint256 nonce

uint256 _limitSize uint256 _type

internal

randomBoxIndex uint256 _collectionId internal

Pages 13 / 35 Lunaray Blockchain Security

4. Audit details

4.1 Findings Summary

Severity Found Resolved Acknowledged

⚫ High 0 0 0

⚫ Medium 0 0 0

⚫ Low 2 0 2

⚫ Info 1 0 1

Pages 14 / 35 Lunaray Blockchain Security

4.2 Risk distribution

Name Risk level Repair status

Administrator Permissions Low Acknowledged

No events added Info Acknowledged

Claim Logic Analysis Low Acknowledged

breedCat Logic Analysis No normal

morphToAdult Logic Analysis No normal

_spawnCat Logic Analysis No normal

buyByU Logic Analysis No normal

Variables are updated No normal

Floating Point and Numeric Precision No normal

Default visibility No normal

tx.origin authentication No normal

Faulty constructor No normal

Unverified return value No normal

Insecure random numbers No normal

Timestamp Dependent No normal

Transaction order dependency No normal

Delegatecall No normal

Call No normal

Denial of Service No normal

Logical Design Flaw No normal

Fake recharge vulnerability No normal

Pages 15 / 35 Lunaray Blockchain Security

Short address attack Vulnerability No normal

Uninitialized storage pointer No normal

Frozen account bypass No normal

Uninitialized No normal

Reentry attack No normal

Integer Overflow No normal

Pages 16 / 35 Lunaray Blockchain Security

4.3 Risk audit details

4.3.1. Administrator Permissions

• Risk description

RewardClaim contract, CatCore contract, CyberCatBlindBox contract, HealthPotion
contract, there are several methods of administrator privileges, can carry out
sensitive operations, the current project has added Timelock contract, if the
administrator private key is controlled by malicious people, or can lead to abnormal
loss of funds and shake the stability of the market The following part of the code is
shown.

 function setFeeInfo(address _potion, address _feeToken, uint256 _fe
eAmount, address _feeTo,address _potionFeeTo) external {
 require(hasRole(FEE_SETTER, msg.sender), "!fee setter");
 require(_potion != address(0), "!potion");
 require(_feeToken != address(0), "!feeToken");
 require(_feeTo != address(0), "!feeTo");
 require(_potionFeeTo != address(0),"!potionFeeTo");

 potionToken = IERC20(_potion);
 feeToken = IERC20(_feeToken);
 feeAmount = _feeAmount;
 feeTo = _feeTo;
 potionFeeTo = _potionFeeTo;
 }

• Safety advice

Timelock contract has been added to the project, it is recommended to keep the
administrator's private key properly to ensure the storage security of the private
key.

• Repair Status

CyberCat has confirmed the risk.

Pages 17 / 35 Lunaray Blockchain Security

4.3.2 No events added

• Risk description

In RewardClaim contract, CatCore contract, CyberCatBlindBox contract,
HealthPotion contract, withdraw method, receiveERC20 method, addEnergy
method, removeEnergy method, claimXPSFor method and many other methods In
order to keep users and administrators informed of contract operation details, it is
recommended to add event logging, as shown in the following code.

 function setFeeAmount(uint256 _feeAmount) external {
 require(hasRole(FEE_SETTER, msg.sender), "!fee setter");
 feeAmount = _feeAmount;
 }

 function setFeeToPercent(uint256 _feeToPercent) external{
 require(hasRole(FEE_SETTER, msg.sender), "!fee setter");
 require(_feeToPercent <= basePercent,"invalid value");
 feeToPercent = _feeToPercent;
 }

• Safety advice

Suggest adding event logging for sensitive operations.

• Repair Status

CyberCat has confirmed the risk.

Pages 18 / 35 Lunaray Blockchain Security

4.3.3 Claim Logic Analysis

• Risk description

RewardClaim contract, claim method, the method appears to be a reward function,
but here the incoming msg.value and feeAmount will be judged, after which the
amount of feeAmount will be transferred, although the value of the feeAmount
variable is controllable by the administrator, but the logic here is not clear, as shown
in the following code.

 function claim() external payable {
 require(msg.value >= feeAmount,"invalid value");
 feeTo.transfer(feeAmount);
 emit RewardClaimed(msg.sender);
 }

• Safety advice

It is recommended that the claim method logic be clarified to avoid the risk of
accidental transfers.

• Repair Status

CyberCat has confirmed the risk.

Pages 19 / 35 Lunaray Blockchain Security

4.3.4 breedCat Logic Analysis

• Risk description

CatCore contract, breedCat method mainly functions as a breeding cat, the method
first determines whether the NFT Token is valid through the modifier, determines
whether the NFT of the operation is owned by the caller through require, and
determines whether the NFT belonging to the caller is breedable, after which the
caller needs to transfer the breeding fee, after which the contract logic will transfer
the new NFT Token to the caller address, here the contract logic is in the caller to
the transfer, and then transfer the NFT to the caller address, so there is no risk of
state changes occurring after the transfer exists, as shown in the following code.

 function breedCat(uint256 _sireId, uint256 _matronId) external ove
rride
 notForbidToken(_sireId)
 notForbidToken(_matronId)
 mustBeValidToken(_sireId)
 mustBeValidToken(_matronId) returns (uint256) {
 require(isBreedable(_sireId, _matronId), "!breedable");
 require(ownerOf(_sireId) == msg.sender && ownerOf(_matronId) ==
 msg.sender, "!owner");
 Cat storage sire = cats[_sireId];
 Cat storage matron = cats[_matronId];
 // deduct fee
 uint256 needPotion = needPotions(sire.breed, matron.breed);
 potionToken.safeTransferFrom(msg.sender, potionFeeTo, needPotio
n);
 uint256 feeToAmount = feeAmount.mul(feeToPercent).div(basePerce
nt);
 uint256 feeToDeadAmount = feeAmount.sub(feeToAmount);
 feeToken.safeTransferFrom(msg.sender, feeTo, feeToAmount);
 feeToken.safeTransferFrom(msg.sender,feeToDead,feeToDeadAmoun
t);
 uint256 newCatId = cats.length;
 cats.push(Cat(0, _sireId, _matronId, 0, msg.sender, now));
 _mint(msg.sender, newCatId);
 sire.breed = sire.breed + 1;
 matron.breed = matron.breed + 1;
 emit CatSpawned(newCatId, msg.sender, 0);
 stateHash = keccak256(abi.encode(_sireId, _matronId, now, state
Hash));
 setTokenURI(newCatId);
 return newCatId;
 }

• Audit Results : Passed

Pages 20 / 35 Lunaray Blockchain Security

4.3.5 morphToAdult Logic Analysis

• Risk description

CatCore contract, morphToAdult method is the main function of morph into adult.
The method determines whether the caller will be the contract address through
modifiers, after which it will determine whether the input parameter catid value is
reasonable. The method logic first determines whether the NFT of the operation is
owned by the caller through require and whether the time satisfies the condition,
after which the new gene of the gene is updated, and the logic that can bypass the
direct change to adult is not found through analysis, as shown in the following code.

 function morphToAdult(uint256 _catId) external override
 notContract()
 mustBeValidToken(_catId) returns (uint256) {
 Cat storage cat = cats[_catId];
 require(cat.gene == 0, "!adult");
 require(now >= cat.bornAt + MatureDays, "!matured");
 require(ownerOf(_catId) == msg.sender, "!owner");

 Cat memory sire = cats[cat.sire];
 Cat memory matron = cats[cat.matron];
 uint256 newGene = geneScience.morphGene(sire.gene, matron.gene,
 stateHash);
 cat.gene = newGene;

 emit CatEvolved(_catId, 0, newGene);

 // update state hash
 stateHash = keccak256(abi.encode(_catId, now, gasleft(), stateH
ash));

 return newGene;
 }

• Audit Results : Passed

Pages 21 / 35 Lunaray Blockchain Security

4.3.6 _spawnCat Logic Analysis

• Risk description

CatCore contract, _spawnCat method, the method is called by the mintInit method,
the above method has not found the logic problem, and mintInit method in the first
line of the prompt message is admin setter, that is, the administrator can be set, here
you need to strictly review the administrator to avoid the uncontrollable situation.

 function mintInit(uint256 _size) external {
 require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "!admin sette
r");
 require(InitMinted < InitSupply,"Inited");
 uint256 initLeft = InitSupply - InitMinted;
 if(_size > initLeft){
 _size = initLeft;
 }

 for (uint i = 1; i <= _size; ++i){
 _spawnCat(0, msg.sender);
 }

 InitMinted = InitMinted + _size;
 }

 function _spawnCat(uint256 _gene, address _owner) private returns
(uint256) {
 Cat memory _cat = Cat(_gene, 0, 0, 0, _owner, now);
 uint256 _catId = cats.length;
 cats.push(_cat);
 _mint(_owner, _catId);
 setTokenURI(_catId);

 emit CatSpawned(_catId, _owner, _gene);

 return _catId;
 }

• Audit Results : Passed

Pages 22 / 35 Lunaray Blockchain Security

4.3.7 buyByU Logic Analysis

• Risk description

CyberCatBlindBox contract, buyByU method is the main function of the user to buy
NFT through USDT, here firstly, it will judge whether the user's purchase quantity
meets the conditions, after that, the user pays the corresponding fee for the NFT that
needs to be bought, after that, it will judge the number of NFT purchased by the user
and send them one by one, here the logic is that the user transfers first and then
updates the user NFT transfer mode, there is no risk of re-entry, as shown in the
following code.

 function buyByU(uint256 _collectionId, uint256 _size) external c
anBuyBox(_collectionId,_size) {

 Collection storage collection = allCollections[_collectionId];
 require(collection.uSoldCount.add(_size) <= collection.uLimitSi
ze, "Not enough left");
 uint256 cost = uPrice.mul(_size);
 uToken.safeTransferFrom(msg.sender,feeAddress,cost);
 uint256 colId = _collectionId;
 for(uint256 index = 0; index < _size; index++){
 nextIndex = nextIndex.add(1);
 uint256 boxIndex = randomBoxIndex(colId);
 uint256 boxId = boxsByCollectionId[colId][boxIndex];
 uint256 nftId = boxNftMap[boxId];
 NFT storage nft = allNFTs[nftId];
 nft.stay = false;
 IERC721(nftAddress).safeTransferFrom(address(this),msg.send
er,nft.tokenId);
 collection.soldCount = collection.soldCount.add(1);
 collection.uSoldCount = collection.uSoldCount.add(1);
 RequestInfo memory info = RequestInfo(msg.sender,colId,next
Index,boxId,nft.tokenId);
 userBuyBoxMap[msg.sender][colId].push(nextIndex);
 requestMap[nextIndex] = info;
 emit BuyBox(msg.sender,colId,nextIndex,nft.tokenId);
 }
 //emit OpenBox(msg.sender,_collectionId,_index,info.boxId);
 }

• Audit Results : Passed

Pages 23 / 35 Lunaray Blockchain Security

4.3.8 Variables are updated

• Risk description

When there is a contract logic to obtain rewards or transfer funds, the coder mistakenly

updates the value of the variable that sends the funds, so that the user can use the

value of the variable that is not updated to obtain funds, thus affecting the normal

operation of the project.

• Audit Results : Passed

4.3.9 Floating Point and Numeric Precision

• Risk Description

In Solidity, the floating-point type is not supported, and the fixed-length floating-point

type is not fully supported. The result of the division operation will be rounded off, and

if there is a decimal number, the part after the decimal point will be discarded and only

the integer part will be taken, for example, dividing 5 pass 2 directly will result in 2. If

the result of the operation is less than 1 in the token operation, for example, 4.9 tokens

will be approximately equal to 4, bringing a certain degree of The tokens are not only

the tokens of the same size, but also the tokens of the same size. Due to the economic

properties of tokens, the loss of precision is equivalent to the loss of assets, so this is a

cumulative problem in tokens that are frequently traded.

• Audit Results : Passed

Pages 24 / 35 Lunaray Blockchain Security

4.3.10 Default Visibility

• Risk description

In Solidity, the visibility of contract functions is public pass default. therefore, functions

that do not specify any visibility can be called externally pass the user. This can lead to

serious vulnerabilities when developers incorrectly ignore visibility specifiers for

functions that should be private, or visibility specifiers that can only be called from

within the contract itself. One of the first hacks on Parity’s multi-signature wallet was

the failure to set the visibility of a function, which defaults to public, leading to the theft

of a large amount of money.

• Audit Results : Passed

4.3.11 tx.origin authentication

• Risk Description

tx.origin is a global variable in Solidity that traverses the entire call stack and returns the

address of the account that originally sent the call (or transaction). Using this variable

for authentication in a smart contract can make the contract vulnerable to phishing-like

attacks.

• Audit Results : Passed

Pages 25 / 35 Lunaray Blockchain Security

4.3.12 Faulty constructor

• Risk description

Prior to version 0.4.22 in solidity smart contracts, all contracts and constructors had the

same name. When writing a contract, if the constructor name and the contract name

are not the same, the contract will add a default constructor and the constructor you set

up will be treated as a normal function, resulting in your original contract settings not

being executed as expected, which can lead to terrible consequences, especially if the

constructor is performing a privileged operation.

• Audit Results : Passed

4.3.13 Unverified return value

• Risk description

Three methods exist in Solidity for sending tokens to an address: transfer(), send(),

call.value(). The difference between them is that the transfer function throws an

exception throw when sending fails, rolls back the transaction state, and costs 2300gas;

the send function returns false when sending fails and costs 2300gas; the call.value

method returns false when sending fails and costs all gas to call, which will lead to the

risk of reentrant attacks. If the send or call.value method is used in the contract code to

send tokens without checking the return value of the method, if an error occurs, the

contract will continue to execute the code later, which will lead to the thought result.

• Audit Results : Passed

Pages 26 / 35 Lunaray Blockchain Security

4.3.14 Insecure random numbers

• Risk Description

All transactions on the blockchain are deterministic state transition operations with no

uncertainty, which ultimately means that there is no source of entropy or randomness

within the blockchain ecosystem. Therefore, there is no random number function like

rand() in Solidity. Many developers use future block variables such as block hashes,

timestamps, block highs and lows or Gas caps to generate random numbers. These

quantities are controlled pass the miners who mine them and are therefore not truly

random, so using past or present block variables to generate random numbers could

lead to a destructive vulnerability.

• Audit Results : Passed

4.3.15 Timestamp Dependency

• Risk description

In blockchains, data block timestamps (block.timestamp) are used in a variety of

applications, such as functions for random numbers, locking funds for a period of time,

and conditional statements for various time-related state changes. Miners have the

ability to adjust the timestamp as needed, for example block.timestamp or the alias now

can be manipulated pass the miner. This can lead to serious vulnerabilities if the wrong

block timestamp is used in a smart contract. This may not be necessary if the contract is

not particularly concerned with miner manipulation of block timestamps, but care

should be taken when developing the contract.

• Audit Results : Passed

Pages 27 / 35 Lunaray Blockchain Security

4.3.16 Transaction order dependency

• Risk description

In a blockchain, the miner chooses which transactions from that pool will be included in

the block, which is usually determined pass the gasPrice transaction, and the miner will

choose the transaction with the highest transaction fee to pack into the block. Since the

information about the transactions in the block is publicly available, an attacker can

watch the transaction pool for transactions that may contain problematic solutions,

modify or revoke the attacker’s privileges or change the state of the contract to the

attacker’s detriment. The attacker can then take data from this transaction and create a

higher-level transaction gasPrice and include its transactions in a block before the

original, which will preempt the original transaction solution.

• Audit Results : Passed

4.3.17 Delegatecall

• Risk Description

In Solidity, the delegatecall function is the standard message call method, but the code

in the target address runs in the context of the calling contract, i.e., keeping msg.sender

and msg.value unchanged. This feature supports implementation libraries, where

developers can create reusable code for future contracts. The code in the library itself

can be secure and bug-free, but when run in another application’s environment, new

vulnerabilities may arise, so using the delegatecall function may lead to unexpected

code execution.

• Audit Results : Passed

Pages 28 / 35 Lunaray Blockchain Security

4.3.18 Call

• Risk Description

The call function is similar to the delegatecall function in that it is an underlying function

provided pass Solidity, a smart contract writing language, to interact with external

contracts or libraries, but when the call function method is used to handle an external

Standard Message Call to a contract, the code runs in the environment of the external

contract/function The call function is used to interact with an external contract or

library. The use of such functions requires a determination of the security of the call

parameters, and caution is recommended. An attacker could easily borrow the identity

of the current contract to perform other malicious operations, leading to serious

vulnerabilities.

• Audit Results : Passed

4.3.19 Denial of Service

• Risk Description

Denial of service attacks have a broad category of causes and are designed to keep the

user from making the contract work properly for a period of time or permanently in

certain situations, including malicious behavior while acting as the recipient of a

transaction, artificially increasing the gas required to compute a function causing gas

exhaustion (such as controlling the size of variables in a for loop), misuse of access

control to access the private component of the contract, in which the Owners with

privileges are modified, progress state based on external calls, use of obfuscation and

oversight, etc. can lead to denial of service attacks.

• Audit Results : Passed

Pages 29 / 35 Lunaray Blockchain Security

4.3.20 Logic Design Flaw

• Risk Description

In smart contracts, developers design special features for their contracts intended to

stabilize the market value of tokens or the life of the project and increase the highlight

of the project, however, the more complex the system, the more likely it is to have the

possibility of errors. It is in these logic and functions that a minor mistake can lead to

serious depasstions from the whole logic and expectations, leaving fatal hidden dangers,

such as errors in logic judgment, functional implementation and design and so on.

• Audit Results : Passed

4.3.21 Fake recharge vulnerability

• Risk Description

The success or failure (true or false) status of a token transaction depends on whether

an exception is thrown during the execution of the transaction (e.g., using mechanisms

such as require/assert/revert/throw). When a user calls the transfer function of a token

contract to transfer funds, if the transfer function runs normally without throwing an

exception, the transaction will be successful or not, and the status of the transaction will

be true. When balances[msg.sender] < _value goes to the else logic and returns false, no

exception is thrown, but the transaction acknowledgement is successful, then we

believe that a mild if/else judgment is an undisciplined way of coding in sensitive

function scenarios like transfer, which will lead to Fake top-up vulnerability in

centralized exchanges, centralized wallets, and token contracts.

• Audit Results : Passed

Pages 30 / 35 Lunaray Blockchain Security

4.3.22 Short Address Attack Vulnerability

• Risk Description

In Solidity smart contracts, when passing parameters to a smart contract, the

parameters are encoded according to the ABI specification. the EVM runs the attacker

to send encoded parameters that are shorter than the expected parameter length. For

example, when transferring money on an exchange or wallet, you need to send the

transfer address address and the transfer amount value. The attacker could send a 19-

passte address instead of the standard 20-passte address, in which case the EVM would

fill in the 0 at the end of the encoded parameter to make up the expected length, which

would result in an overflow of the final transfer amount parameter value, thus changing

the original transfer amount.

• Audit Results : Passed

4.3.23 Uninitialized storage pointer

• Risk description

EVM uses both storage and memory to store variables. Local variables within functions

are stored in storage or memory pass default, depending on their type. uninitialized

local storage variables could point to other unexpected storage variables in the contract,

leading to intentional or unintentional vulnerabilities.

• Audit Results : Passed

Pages 31 / 35 Lunaray Blockchain Security

4.3.24 Frozen Account bypass

• Risk Description

In the transfer operation code in the contract, detect the risk that the logical

functionality to check the freeze status of the transfer account exists in the contract

code and can be passpassed if the transfer account has been frozen.

• Audit Results : Passed

4.3.25 Uninitialized

• Risk description

The initialize function in the contract can be called pass another attacker before the

owner, thus initializing the administrator address.

• Audit Results : Passed

4.3.26 Reentry Attack

• Risk Description

An attacker constructs a contract containing malicious code at an external address in the

Fallback function When the contract sends tokens to this address, it will call the

malicious code. The call.value() function in Solidity will consume all the gas he receives

when it is used to send tokens, so a re-entry attack will occur when the call to the

call.value() function to send tokens occurs before the actual reduction of the sender’s

account balance. The re-entry vulnerability led to the famous The DAO attack.

• Audit Results : Passed

https://solidity.readthedocs.io/en/latest/contracts.html?highlight=fallback#fallback-function

Pages 32 / 35 Lunaray Blockchain Security

4.3.27 Integer Overflow

• Risk Description

Integer overflows are generally classified as overflows and underflows. The types of

integer overflows that occur in smart contracts include three types: multiplicative

overflows, additive overflows, and subtractive overflows. In Solidity language, variables

support integer types in steps of 8, from uint8 to uint256, and int8 to int256, integers

specify fixed size data types and are unsigned, for example, a uint8 type , can only be

stored in the range 0 to 2^8-1, that is, [0,255] numbers, a uint256 type can only store

numbers in the range 0 to 2^256-1. This means that an integer variable can only have a

certain range of numbers represented, and cannot exceed this formulated range.

Exceeding the range of values expressed pass the variable type will result in an integer

overflow vulnerability.

• Audit Results : Passed

Pages 33 / 35 Lunaray Blockchain Security

5. Security Audit Tool

Tool name Tool Features

Oyente Can be used to detect common bugs in smart contracts

securify Common types of smart contracts that can be verified

MAIAN Multiple smart contract vulnerabilities can be found and classified

Lunaray Toolkit self-developed toolkit

Pages 34 / 35 Lunaray Blockchain Security

Disclaimer：

Lunaray Technology only issues a report and assumes corresponding responsibilities for

the facts that occurred or existed before the issuance of this report, Since the facts that

occurred after the issuance of the report cannot determine the security status of the

smart contract, it is not responsible for this.

Lunaray Technology conducts security audits on the security audit items in the project

agreement, and is not responsible for the project background and other circumstances,

The subsequent on-chain deployment and operation methods of the project party are

beyond the scope of this audit.

This report only conducts a security audit based on the information provided by the

information provider to Lunaray at the time the report is issued, If the information of

this project is concealed or the situation reflected is inconsistent with the actual

situation, Lunaray Technology shall not be liable for any losses and adverse effects

caused thereby.

There are risks in the market, and investment needs to be cautious. This report only

conducts security audits and results announcements on smart contract codes, and does

not make investment recommendations and basis.

